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Two-Gomponent Ising Chain
with Nearest-Neighbor Interaction
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The one-dimensional, two-component linear Ising chain with nearest-
neighbor interaction is formulated by using the transfer matrix method,
with emphasis placed on the case in which the two components are randomly
distributed along the chain. Certain recurrence formulas appear such that
the mth-order partition function of one of the components is dependent
on the lower-order ones. The algorithm provides a working basis for dis-
cussing the thermodynamic and magnetic functions with various con-
centrations of one of the components. An exact expression for the partition
function is derived for a linear chain which is composed of a periodic distribu-
tion of the two components. The construction of a periodic sequence which
would approximate a random distribution of the two components is briefly
discussed.

KEY WORDS: Ising model; disordered system; one-dimensional chain.

1. INTRODUCTION

It is well known that the linear Ising chain with short-range interaction
between neighboring sites does not exhibit phase transition.®” The intrinsic
interest remains, however, in that the model is relatively simple to investigate

This study was partially supported by ARPA and monitored by ONR(N00014-17-0308).

1 Physics Department, University of Malaya, Kuala Lumpur, Malaysia.

2 Institute for Fundamental Studies, Department of Physics and Astronomy, University
of Rochester, Rochester, New York.

3 National Institutes of Health, Washington, D. C.

309
© 1973 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011,



310 F. T. Lee, E. W. Montroll, and Lee-po Yu

in comparison to the two- and three-dimensional systems. In addition, a
chain of spins may serve in a certain approximation as a model of long
molecules, which has found important applications in polymer physics as
well as in biological systems.‘®® Experimentally, a number of crystalline
organic free radicals'®® and rare earth chlorides®:” are known to exhibit
properties characteristic of a one-dimensional system; in both cases, the
molecules or magnetic ions are arranged to form parallel chains such that
the exchange interaction between ions of different chains is much weaker
than that between ions within the same chain. Theoretical study using a
generalized Ising model has been able to achieve reasonable comparison with
the observed thermodynamic and magnetic functions of these substances,

In this paper, we investigate the properties of a two-component linear
Ising model, with emphasis placed on the case in which the two components
are randomly distributed along the chain.’®® The formulation utilizes the
transfer matrix method® which enables the partition functions of the system
with few defects to be computed in a straightforward manner. We will see
that certain recurrence formulas appear so that the mth-order defect partition
function is dependent on the lower-order ones.® The algorithm provides
a working basis for discussing the thermodynamic and magnetic functions
with various concentrations of one of the components.

Exact expressions for the partition functions can be derived for a linear
chain which is composed of periodic distributions of the two components.
While such distributions do not occur naturally in a real system, one expects
that the qualitative similarities and differences resulting from various com-
positions within a periodic chain, which is equivalent to an alteration of
the concentration of one of the components, whould show up in these
cases. The partition functions of the periodic systems are evaluated in
Section 5 and in Section 8, we discuss briefly the construction of a periodic
sequence of the two components which would approximate a random distri-
bution of the two components. Qur calculation is made for systems in which
the sequence of the two components remains forever frozen in.

2. FORMULATION OF THE PROBLEM

Let us consider a ring of N localized spins equally spaced on lattice
sites which are labeled consecutively 1, 2,..., N. A spin at site / is identified
by a variable o; with o; = 1 corresponding to a spin-“up” configuration
and o; = —1 to a spin-“down”’ configuration. The ring configuration implies
periodic boundary conditions o,y = o;. Since we shall be concerned
with two-component systems (species 4 and B), there will be three kinds of
nearest-neighbor interaction. We let E,,, E43 = Ep,, and Epp represent
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the energies of interaction between the various types of pairs A4, AB, and
BB and define three coupling parameters (8 = 1/kT)

K, = BEAA s K, = ﬁEAB s K, = IBEBB (1)

If w; is the magnetic moment of spins of species j (j =1 =4, =2 = B),
we define

J.’i = B"LJ'H’ .] = 17 2 (2)

where u,H is the interaction energy of the spin with an external field of
magunitude H in the “up” direction.
The Hamiltonian of our system of spins can be written as

N
—BH = z (Kfo,0514 + JP0y) 3
i=1

where K? has one of the values K , K, , K; depending on the species located
at points  and i + 1, and Jtis J; if 7 is of species 4 and J, if it is of species B.
The properties of a perfect lattice of species A depend on the largest charac-
teristic values A, of the matrix P whose matrix elements are

2
P(o, ¢") = exp[Kio0” + $Jy(c + o)] = Z )\,-1/13-(0') zﬁ,-(o-') (4a)
j=1
with
A = eficosh J; 4- [e7%51 - ¥ 5inh? J 12 (4b)

and the ; are the eigenvectors of P corresponding to the eigenvalues A;,
which satisfy the orthogonality relationship

Z ‘ﬁj((f) ‘/’k(o) = 5jza (5)

o=x1

We now define two other matrices Q and R whose matrix elements are

Rio, @) = explKyoo' 4o + ) = X, pfi0) 0) (@

O(c, o) = expl[Kyo0' + $Jy(0 + 0)] = };1 7i$:(e) ¢5(0") M

The ’s and ¢’s also satisfy the orthogonality relations

Z ‘99'(0) Oi(0) = it » Z ‘755(0) ¢k(‘7) = Op 8)

with the characteristic values p; and y;, respectively, given by formulas
like Eq. (4b) but with the new appropriate subscripts on J and X.
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3. PARTITION FUNCTION OF A RING WITH ONE DEFECT

We place our defect at lattice point 1 on our ring. Then the partition
function of the system is given by

N-1
Z exp [K2<71Gz + ¥ K604 + Keonoy + Joou 4+ Y, Jlo,]

=2 i=2
= 2 expl3e(on -+ 02)] exp[Ky0105 + $J5(01 + 09)]
N—1

Pa n exp[K1040:1 + 3J1(0; + 049)] explKyono; + $o(on + 0]

=2

= Z explie(on -+ 05)] Q(oy , 03) H P(o;, 0541) Qon, 01)

=2

= Y P(o,0;N) ©

o=41

where we have defined € = J; — J,,

P(o, ;1) = )}, explie(o, + 0))] O(o, o)

X f[zP(oi L) Qoes o) 2 (10)
If we use the notation
(U, k) = Z Ji(o)exp(3ea)] (o) an

then substitution of Eq. (4a) and (7) into (10) and application of the ortho-
gonality relations (5) and (8) yields for ¢ > 3

P(Ga G,; t) = Z '}’Jle 2')/73¢11(U)(]2 ’ ]1)(]2 ’]3) ¢73(0
.71.72]3—

By introducing a few more definitions,
w; = 75/'}’1 H w = )‘Z/Al ’ Y = (lsJ)/(la 1)
fA0) = Y, w;34¢40),  Pdo, o') = fi(o) fio) filo) (12)
g
Fi(o, 0’3 1) = Py(0, 0') + @' Pyo, o)
we see that

P(o, 6'; 1) = N, %(1, 1)’ Fy(, 0’5 1) (13)
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Returning to Eq. (9), we find that
Zy = N7 )P Y [fi0) A) + oV (o) fi(0)]

a=41
= )\i\/—zylz(l, 1)2[(1 + wzzﬁz) + wN—z(y§1 + wzzygz)]

We choose A; to be the larger of the two characteristic values of the matrix P
so that (A/A)Y = @™ — 0 as N — oo, Then

Zy = N7 DY+ ooy as N—> o (14
To be consistent with a pattern we shall use later, we write

Zy = N2, D2y with By = 1 4w, (15)

4. PARTITION FUNCTION WITH TWO DEFECTS AND
THERMODYNAMIC FORMULAS FOR LOW DEFECT
CONCENTRATIONS

Let us place one defect at lattice point 1 and another at #n. Then are three
possibilities to consider (a) 3 <un <N — 1,(b)n =3,(c)n = 2. If we let ¢
be the number of lattice sites between defects, these cases are t > 2, ¢ = 2,
and ¢ = 1.

Consider case (a) with ¢ > 3. By using Eq. (10), it can be easily shown
that the partition function of the system is

Zy(t) = ZZ P(oy, 0011 51) Plogyy, 003N — 1)

%1%t

= WML D' Y Y [P, o) + o Pyo, o)

X [Py(c’, 0) 4+ @™V EPy(o’, 0)] (16)

where oy = o, 0y = ¢’. AS N — oo for fixed 7, w2 — 0since 0 < w < 1.
Hence

Zy(t) = )\{V—4'}’14(1’ 1)4 hy(t) a7
with
hy(2) = 3, 3" [Py(o, 0') + @ 2Py(o, 0')] Py(o’, o)

[ 4

= X 2./(0) Fy(o, o' ) fi(0") (18a)

=A% 4+ w43, if >2 (18b)
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with
Ay = ;fi((f)fj(U) = YaYn T @2%VieVis = As (19)
A can be treated as the elements of a2 X 2 symmetric matrix A so that
4] = detd = 0’(yo — Y12 ¥21)? (20)
An alternative form of Eq. (18) is
ho(t) = (14 @01 + 0y + 0yye)’s  1=3 (180

In case (b) in which ¢ = 2 and only one host particle appears between
the two defects, the partition function can be written as (o, = ¢, 03 = o)

Zo(2) = Z Z P(o,0";2) P(o', 0; N — 2) (21
where
P(o,0';2) = Z Q(a, o")[exp(ea”)] O(c”, o”)
= Z v, 1 s(0”) v; (22)
with
Ui k1 = ¥ $i(0)lexp(e0)] ¢u(0) = [k, j] (23)

If we let N — o and note that P(o, ¢’; N — 2) — Py(o, ¢'), we see from
combining (22) with (12) that

Z,(2) = N1, 1 ) @9

which
hy(2) = [(1 + @o®X15 ¥12) + @oV12(Xan + w™Xap y1)1[1, 11/(1, 12 (25)
X = 7, kI, 1] (26)

1t will be useful to express P(o, ¢; 2) in terms of f;(¢). Equation (12) can be
inverted to give ¢(c) as a function of f;(c) as follows:

$:1(0) = wo[¥22/1(0) — Y12 fo0)Y/| 4 V2 (27a)
$2(0) = [fal0) — yu fi(@) /| A |12 (27b)

With these relations, we can also introduce an F (o, ¢’; 2) which is consistent
with (13) so that

P(o, 0';2) = y,3(1, 1)? Fy(o, 0'; 2) (28)
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If we substitute (27a, b) into (22), we find that

Fi(0,0';2) = }.fi(0") Bi(2) fi(0) (292)

where
B11(2) = By yas( Voo — X12Ye1) — Var(Xg1 Yo — Xeo Var)]
B15(2) = Bo(D)[—y12( a2 — X12¥21) + (Xa1 V0 — XaaVer)]
= Bxn(2) (29b)
Bys(2) = Bo(D[y1o( 12 — X12) — (X1 V12 — Xa3)]
By(2) = [1, 1 wy¥/[(1, 1)? [ 4 []

One can again treat B;;(2) as the clements of the 2 X 2 symmetric matrix
B(2), so that

| B2)| = det B(2) = [1, 11? wy?(xps — X12Xa1)/[(1, 1)* | 4 |] (30)

For all ¢ > 2, we can also define the corresponding B;,(¢) analogous
to (29b):

Fy(o, 0’3 1) = 3. fi(0") Bin(t) Su(o) (31)
with

B(t) = 8;(N/ADE, t>12 (32a)

| B()| = det BU) = wi=2, 1> 2 (32b)

One can then obtain Z,(2) from (21) and (28). On that basis,

hy(2) = 3 3 /1(0)) fi(e") fi(o") Byil2) fil0) fi(o)

ij oo’
= Z AuBﬁ(z) Ail
i
which can be verified to be exactly (25) as it should be.

The pattern is now clear so that in case (c) with = 1, the partition
function can be written as

Zy(1) = Z Plo,0'; 1) P(¢’,o; N — 1) (33)
where
P(o, 0'; 1) = (y,3/A) Fi(o, 6'; 1) (34)
Fy(o,0';1) =3 fi(0") Bu(l) filo) (35)
ik

822/8/4~2
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If we use the notation

<ja k> = Z 61‘(0) ¢7c(0)’ Zie = <.]! k>/<1, 1> (36)
then we have

2
By (1) = By(1) Z PWsYarZin — YorZin)®

By (1) = —By(1) z PiWs YoaZin — VarZi)(Ws V1aZin — Zio)

= By (1) (37a)
Byy(1) = By(1) Z piwy Y1921 — Zy)?
By(1) = A0, 1% (2140

and
| B(1) = det B(1) = [AX1, DY (yi* | 4 D]papa(Zae — Z19791)? (37b)

Equation (33) can be simplified to give

Zy(1) = N (1, 1) hy(1) (38a)
ho(1) = [Aps<L, DA {21, DA + wp10230)* + Lolzen + W5 Y19729)°]
(38b)

with £; = p/p; .

We can now consider Fy(o, o’; t) to be defined for all positive integer
values of ¢ by (29a), where the B,,(t) are defined by (29b), (32), and (37a).

The explicit representations of the quantities A; , y;, and p; are

A _
1 — CleK]_ :t (e 2Ky + s1262K1)1/2

.

7’)11% - czeKZ + (e_2K2 + S22€2K2)1/2

Plg — czeKa 4 (e—zK3 -+ S22€2K3)1/2
P2

where ¢; = cosh J,, s; = sinh J;. The quantities (i, j), {i, 7>, and [i, j] are
explicit functions of the J’s and K’s. One finds
(1,1) = (4,4,)272 cosh[i(e + 0;)] e 1752
(1,2) = (4,4,)"22{s, cosh[(e + 0;5)] — 4, sinh[}(e + 0;,)] 57
(2, 1) = (A;4,)2{s; cosh[¥(e + 053] — A, sinh[}(e + 6,,)] 5753
(2,2) = (A;A4)722 cosh[i(e — 0,,)] e X175z
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where
A, =st4e* =12

012 = 2(K; + Kp) + logl(sy -+ A4)(Ss + 45)]
Similarly, one finds that

1, 1y = (dyAg) ™ /*(cosh $05) e 75 = (2,2)
{1,2> = (Aydy) 12 [Ay(sinh }0,5) — sy(cosh 18,,)] o5
=—<2 1
where
Ay =5 + e, by = UK, + Ky) + logl(s, + As)(sz + 45)]
Finally,
[1, 1] = cosh € - s,(sinh €)/A4,
[1,2] = —e *(sinh €)/4, = —[2, 1]
[2, 2] = cosh € — sy(sinh €)/4,
The thermodynamic properties of a chain with a low concentration of
defects can be expressed in terms of the formulas derived so far. For a

system with 7 defects located at r,,r,,...,T,, a thermodynamic function
b, ,1,,..., 1,) can be written as®

Bty by 1) = D) = By + 3 [B(r) — By]

=1
n—-1l n .
+ 2 2 [P, 1) — B(ry) — D(ry) + Dol + -
J=1;k=j+1
39)
where @, is the thermodynamic function for a perfect system, D(r;) is that
for a system with one defect at r;, etc. In particular, if @(n) = log Z,(n),

where Z,(n) = Z,(x;, Yy ,..., I'y) 18 the partition function for a system with #
defects, (39) becomes

log Zu(n) = log Zy - 3 10glZs(r,)/Z]

=1
n~1 7

+ 2 . 21 log{Zy(x; , ) Zo/[Z,(x;) Zy(x )]} + - (40)
=1, k=it

For our linear system, Z,(r;) is independent of r;{Eq. (15)], and Z,[r;, r,)
depends only on the relative separation |r; — r, | = ¢ of the two defects
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Jlocated at r; and r;, . Let n(s) be the number of successive pairs whose members
are separated by s lattice sites. Then the double sum in (40) can be written as

2. 1(s)loglZy(s) Zy/ Z,?]

s=1

If the defect concentration is ¢, given a defect site, the probability that another
one is s lattice spacings away is ¢. Since the total number of defects is Ne, the
expected number n(s) of defect pairs separated by s intervening lattice sites
in a very large ring is Nc - ¢ = N¢? independent of 5. Hence, to order c?,

log Z(c)/N = log A, + 2¢ log[(1, 1) y,/A] + clog by

4 e Y loglhs(s) hfh?] 4 - 1)

with 2, = 1. Thermodynamic properties of the system can be calculated
from this expression in the usual manner.®

5. PROPERTIES OF SYSTEMS WITH SIMPLE PERIODIC
ARRANGEMENT OF DEFECTS

The partition function of an arbitrary sequence of A’s and B’s is

N
Z = ), []explK**o,05, + 05 + §J700,] (42)

o=41 j=1

where K’#+% has values K;, K,, or K,, depending on whether the pair
j»j+ lis an AA pair, an AB (BA) pair, or a BB pair. Also, Jis J; if jis an
A4 and J, if jis a B. Now let

Wiitl(g, ¢’} = explK’ oo’ + 30 + $JiTi0’] (43)
There are four possible W’s. In terms of (4a, b), (6), (7), and (10), these are

W, =P, W,=R

(44)
ef /2 0 e /2 0
WZ(Jl ) J2) = ( 0 e_E/z) Q, Wz(-]z s Jl) = Q ( 0 e_s/z)
The partition function is then
Z = tr(WL2W23 ... N1 45)

This section will be concerned with periodic arrangements of defects
and, therefore, periodic arrangements of W’s in Z. The simplest periodic
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sequence is the alternating one ABABAB ---. In that case, all W7+l equal
WyJy, Jy) or Wy(J,, Jy) and

Z = t[WylJy, Jp) Wyldy, JOIV2 ~ [4,(1, DIV (46)

where 4,(1, 1) is the largest root of the characteristic equation

(A, DP =241, D Ay, + 4y, =0 (472)
defining
24,y = tu[Wy(Jy, J) Walls, Jp)]
= 2[e**2 cosh(J;, + Jp) + e72%2 cosh(J, — J,)] (470)
and
Ayy = det[Wy(J1, Jo) Wiy, Jp)] = (2 sinh 2K,)? (47¢c)

Generally, suppose that the defect sequence is periodic with period n. Then
the (1 -+ 1)th particle of the chain is the same as the first, and if Mn = N,

Z = tr(WI2W23 o WnlyM ~~ A M (48)

where /1, is the largest characteristic value of the quadratic equation (since
the product of the W’s is still a 2 X 2 matrix)

A2 — tr(W1’2W2’3 Wn,l) < det(Wvl,sz,s Wn,l) =0 (49)

Since the determinant of a product of matrices is the product of their deter-
minants, we have

det(WL2w2s - rmt) = [ det(Wei1) = [] [2 sinh(2K7i+)] (50)
j=1 j=1

=

The trace of the product of the W’s is more sensitive to the sequence and,
rather than writing a general formula, we calculate it for several special cases.

In order to see the effect of changing the defect concentration, let us
suppose that there is one defect for each n atoms, so that each defect is
followed by n — 1 host atoms. The concentration is ¢ = 1/n. We identify
the appropriate A by A(n — 1, n). The W sequence follows from W2 =
WolJs , Jy), Wil = Wy(Jy, Jp), all other Wi+l = W, . Then

Wit = Wy(Jy , J) Wi Wo(Jy, Jo)

e’z 0 et 0 ©h
=0 ( 0 e“f/z) Pn_z( 0 e‘E/Z)Q
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Then, from (10) and (8),
try(Wi2 - Wnl)y =% P(o, o; 1), n>1
= A;Z_I[YI2(13 1)2 + '}/22(15 2)2] + A122—_2[’}/12(21 1)2 + 722(2, 2)2]
(52)

Hence, our characteristic equation (47a)) becomes
Lo—1,1)—2An—-1,n)d, 4, + 4y 3,=0 (53a)
where
24, 15 = N7 1P + @) + 0" (yn F @,y)]  (53b)
4, = (2sinh 2K,)*(2 sinh 2K,)"~> (53¢)

Another example which can be dealt with in a similar manner is that of
periodic blocks, say #, B’s followed by n; 4’s, etc., with n, -+ n, = n. Then,
if Mn = N,

Z= tr[W:2—1W2(Jz » J1) Wferz(‘h » J)IM (54)
Now, if n; > 1 and n, > 1,

Anl,nz = det[Wé’Tl WylJa, J) Wfl—l Wolldy 5 J5)]
= (2 sinh 2K,)™7X(2 sinh 2K3)"* (2 sinh 2K,)? (552)

2An1,n2 = tr] W:erz(Jz > J1) Wlnerz(Jl A

2
= Z 2 }‘?f—lyigpﬁylyu(jl s Jo)(s s J2)<Js s Jor<Jas » o> (55b)
jl.-nj‘ltl
Then
Z ~ [A(ny , nx)™ (56a)
with A(n, , ny) the larger root of the equation

[/1(7’11 s ’12)]2 - 2An1,n2/1(n1 ’ nz) + A’n1.’ﬂ'2 = O (56b)

Since A satisfies the equations
X2 — 2Xeficosh J; 4 2sinh 2K, = 0 (57a)
Ar — 22n-1eX1 cosh J; + 2272 sinh 2K, = 0 (57b)



Two-Component Ising Chain with Nearest-Neighbor Interaction 321

it can be easily shown that
Aypiang, = 245,410, cosh J; — 24, . sinh 2K; (58a)

Ay ngea = 25, 5,118 cosh Jy — 24, ,, sinh 2K, {(58b)

6. PARTITION FUNCTION OF A RING WITH AN
ARBITRARY CONCENTRATION AND LOCATION
OF DEFECTS

When the defects are not periodically arranged, we can no longer find
a closed formula for the partition function or for the thermodynamic
properties of our ring. However, a series expansion in the concentration can
be found.

In the three-defect case with #, lattice points separating the second defect
from the first and ¢, separating the third from the second, it can be easily
shown that as N — oo for fixed ¢ and #,,

Zyty, 1) = ), P(o, 0'; 1) P(¢', 0"; 1) P(0", o3 N — 1, — 1)
~ N (L 1) Y Fi(o, o5 t) Fi(0%, 075 1) Pi0”, 0)  (59)

1t is convenient to define

Fy(o, 0" 1y, 1) = Y, Fi(o, o'; 1) Fa(o', 0" 1) (602)

Fn(o's 0”; tl s tz ERRRE tn) = ZFn—l(as U’; tl H] 12 EARAE t'n—l) F1(0J5 U”; t’ﬂ) (60b)

== ZFI(O" o' 1) Fpy(0, 051, L3 5y tn) (60c)
Gty s ty s ) = 3, JH0) Fu(0, 05 ty yenes 1) i(0)) (61)
Then, as N — oo,
Zy(ty, ty) = /\{v_ﬁ’)’la(l, 1) hg(ty , 1,) (62a)
with
bty 1) = G2ty , 1) (62b)

Incidentally, by referring back to (18), we see that

(1) = G(t) (63)
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For a linear chain with n defects, it can be easily shown that as ¥ — o for
s by yeuny By fixed,
Zalty seees tng) = A3 2" 2L, DX Bty yeney £yy) (64a)
with
hn(tl EARA ] t'n—l) = Gg.q)(tl 3%ty tn——l) (64b)

In the appendix, we show that A,(%, ...., £,,) satisfies a simple recurrence
relationship [Eq. (A.10)]:

hn-i-l(tl EEREE) t'n) hn—l(tZ PAARS t'n——l) = hn(tl r-’:tn—l) hn(tz EARRE] tn)

n—1
+ Dyy(ty) Crolty)| 4 "2 H | B(t)l, n>1
=2
(65a)
where
Cif(t) = Y, AsnBus(2) (65b)
Dyt) = Z Bi(t) Ap; (65¢)

The elements A,; and B;;(t) for t = 1, 2,, > 3 are defined in Section 4.

With these results, we can find a simple expression for log Z,, in terms
of the £, . To see how this goes, we note that w = Ay/A; , and it was postulated
that A, = min(A;, A;). If the defect concentration is small, then
(ty + t, -~ + t,) is large since it is the number of lattice spacings between
the first and the nth defects. In fact, if the concentration is practically zero,
we can neglect the right-hand side of (652) when»n > 1. Then

hy(ty) hy = hihy (662)
This implies that
hn(tl s L9 senes tn~1) = hln (66b)

We may call this the zeroth approximation to /4, and therefore to Z,, .

The first approximation, which is a slight improvement, can be obtained
by supposing that the right-hand side of {65a) can be neglected when n > 2.
Then

hy(ty , t2) = [ho(t2)/ 1 *]Lha(t2)/ i) By (67a)
On the basis of the hypothesis,
hy(ts, ta, 1) = hy(ty, 1) hs(ty , 1)/ ho(ts)
= [Ay(t0)/ 1 [ha(to) i Do) ] 1y (67b)
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For the first approximation,

n-1

ho(ty s by penes tyy) = By" H [hs(t5) Bo/Py?] (67¢)

i=1

Clearly, if all ¢; are large so that A,(¢;) = h,?, we recover the zeroth approxi-
mation.

If we proceed to a second approximation, the pattern will become clear
so that we can generalize to the complete solution of the problem. Let us
suppose that the right-hand side of (65a) can be neglected when » > 3. Then

h(ty, by, t5) holty) = hy(ty, 1) Bty 15) (682)
which leads to

Iahs(ty 5 1) hhs(ts 5 t5) 3 hoholt
hy(ty) haolty) ha(ts) ho(t3) o1 Ae®

hylty, 1y, t5) = i) ht (68b)

For our second approximation, we obtain

n—3 n—2
hn(tl > o 5y tn~]) = Uln l—_[ Uz(tj) H US(ZJ' 9 tj+1) (680)
j=1 j=1

where we define

. . Rty sever Een) Bps(fo 5eres To)
Or=tus Ut tnd = 30 G S vt 7]
©9)

The zeroth approximation is U;”, the first is U;™ multiplied by the product
of the U,’s, the second is the product of the U,’s, Uy’s, and the Uy’s. It is not
difficult to guess that the general formula for 4, is

-1 n—2 n—3
hn(tl 30nen tn—-l) = Ul ]_I Uz(tj) H U3(ZJ' H tj+1) H U4(IJ' > t]'+1 s tﬂ'+2) Xooe (70)
=1 j=1

i=1

so that
log Z(ty 5. tpy) = N log Ay + 21 log[(y4/y)(1, 1)]

1—1 n—2
+nlog U, + Y log Uy(ty) + Y log Uyt , t;41)
i1

=1

n—3
+ Z log Uy(#s 5 tiga s tiga) + - (71)

g=1

Rather than giving a formal proof of (70), we examine one special case
to observe the basic pattern behind the equation. Let us suppose that we
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wish to calculate the contribution of the U,’s to hy, when it is postulated
that A, 4h, 1 = h,h, when n > 15. Then if (70) is valid for A, ,

Pog(ty 5eves Ta) = hoy(ta 5evs ta9) Nar(ts 5enrs T01)/Prog(Eg 5e-es Bg)

. Us(ty 5o t)[Us(t2 o5 t5) - Usltig oo, 1) P Usllig soves fo1)
Us(tz yeney t5) U5(t3 9eees fs) U5(tl7 yerey ’20)

= o Uslty soos 80) Us(ta seees t5) o+ Us(tyy 5oees ta) Uslts 5eves to1)

The crucial feature is that the numerator contains the square of the U
functions which appear in both k,,’s. These are exactly the U’s which appear
once in Ayy(ts ,.-., tap), SO that one of the two factors of the square cancels the
denominator. This observation can be made on the basis of an induction
proof of (70) in that the value of n for which one sets 4, A, , = h,h, can
be made as large as one wishes in the case N — co.

1t must be emphasized that any specific U which we wish to use in (71)
must be calculated from the exact recurrence formula (65a) and the definition
(69).

7. ALGORITHM FOR log Z, WHEN DEFECTS ARE
RANDOMLY LOCATED

The numerical value of any Uyt ,..., t,_;) depends explicitly on the
number of lattice spacings between successive defects. Consider first
Y i log Uy(¢;). There are a certain number of successive defects separated by
one lattice spacing, a certain number by two, etc., so that if n(s,) is the number
of successive pairs whose numbers are separated by s, lattice spacings, the
sum over the U, becomes

o]

Z n(sy) log Uy(sy) (72)

;=1

Now let n(s, , 55) be the number of successive defect triples such that s, is the
number of lattice spacings between the first two members of the triple and
s, that between the second two. Then the Uj term of (71) becomes

Y 2 1Sy, 52) log Us(sy, 52) (73)

s3=1 $p=1
Successive triples are overlapping: If the first triple is characterized by (sy , $a),
the next is characterized by (s, , s3), and so on. We can similarly define
n(s; , Sy , 85) for U, , so that (71) becomes, as N — o,

N-tlog Z,(n) = log Ay + 2(n/N) log[(1, 1) y/A,] -+ (n/N) log Uy
+ N7t Z n(sy) log Uy(sy)

8;=1

+ NIYY sy, 50) log Uglsy, s9) -+ - (73)

51, 89=1
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When our defects are distributed randomly with concentration ¢, we can
find explicit formulas for n(sy), n(s; , sy), n(s;, 8, 83), etc. The number of
successive pairs whose elements are separated by sy lattice spacings are
nc(l — ¢)»~1, since such a configuration corresponds to a defect (of which
there are n) followed by s; — 1 host atoms. Similarly, the number of triples
with spacings s; and s, is ne(1 — ¢)*1 ¢(1 — ¢)*~1, the number of quadruples
ne(l — o)te(l — o)t ¢(l — ¢)%L, ete. Since ¢ = n/N, we obtain, as
N — 0,

N-tlog Z(c) = log A, - 2¢log[(1, 1) yi/A] + ¢ log Uy

4 Z et ZZ (1 — C)s1+sz+...+s,-—j log Uji(sy 8 (75)

j=1 8y°rr =1

8. APPROXIMATION OF ARBITRARY DISTRIBUTIONS BY
PERIODIC ONES

In Section 4, we found that in a chain with random distribution of
defects (hereafter denoted by B) at concentration ¢, the expected number of B
pairs separated by s intervening lattice sites in a very large ring is N¢? inde-
pendent of 5. One can approximate a random chain by a periodic one by
constructing a sequence of A (host sites) and B’s such that the number of B
pairs occur in the correction proportion N¢2. If the period is small, only the
nearest- and perhaps the next-nearest neighbors occurs in Nc¢® times, but
as the period becomes larger, one can expect more distant neighbor pairs
to appear in the correct number.

As an example, we consider a random chain of equal numbers of 4
and B of length N. Then the number of pairs of B’s separated by an integral
number of lattice spacings is N/4. In a chain of period four,

AABB| AABB | AABB | AABB

the number of pairs of B which agree with N/4 comes from the first, third,
fifth, seventh, ninth, etc., neighbor pairs, but wrong in the second, fourth,
sixth, eighth, etc., neighbor pairs. The chain of period eight,

AAABABBB | AAABABBB|AAAABABBB

has the required number N/4 of pairs of B separated by 8 — 7, 8 — 6,
8 — 4,8 — 2,8/ — 1 with j = 1, 2,.... A chain with period 12 which agrees
with a random chain in the number of first, second, third, and fourth
neighbors is

BBBBABAAABAA | BBBBABAAABAA
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An example of a case of period 16 which agrees with a random chain up to
the sixth neighbors is

BBBAAAABAABABBBA | BBBAAAABAABABBBA

In Table I, we have compiled the periodic sequence for various concentrations
¢ which would approximate a random two-component chain correct to
n neighbors.

9. THERMODYNAMIC PROPERTIES OF A
TWO-COMPONENT LINEAR ISING CHAIN:
GRAPHICAL AND DISCUSSIONS

The thermodynamic properties of the various two component Ising
chains obtained in Sections 6 and 7 are investigated graphically (Figs. 1--3).

The zero-field specific heats for ferromagnetic components are computed
for the two-component chain with random distribution (Section 7) and
periodic distribution (Section 6) for the concentration range 0 < ¢ < 1. The
theoretical curves have rather similar structures. For small concentration c,
the specific heat rises toward a maximum and then tails off gently at high
temperatures. The behavior is typically that of a perfect chain with type 4
atoms. For large ¢, the specific heat tends to peak at a temperature typical

T T T ] T f I I
oal- K,=1.25K, K57 5K,

0.2

SPECIFIC HEAT C/NKk

[o}] o

[ j| ! | ! ] 1 I
G~ 05 10 15 20 25 30 35 40 45 50
TEMPERATURE KT/E
Fig. 1. Zero-field specific heat for two-component random
Ising chain, both components ferromagnetic K, = 1.25K;,
K = 5K;, versus reduced temperature k7/E44. Note the
presence of two maxima for ¢ = 0.7,
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ST 1T T T T T T T T

Kp=1.25K; Kg= 5K,

.35

n
()]

SPECIFIC HEAT C/Nk
' v
O

[T S S IS S S, -
0 O5 10 15 20 25 30 35 40 45 50

TEMPERATURE KT/E,,

Fig. 2. Zero-field specific heat for two-component periodic
Ising chain, with n; + 1, = 10, both components ferromagnetic
(same parameters as in Fig. 1). Note again the presence of double
maxima.

SPECIFIC HEAT C/Nk

TEMPERATURE  kT/E,,

Fig. 3. Zero-field specific heats. The approximation of a
random chain by a periodic one is more evidently displayed
here for various concentrations ¢. (——) The random chain;
(- — -) the periodic chain.
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of the type B atoms. In the intermediate range of concentrations, there is a
competition between these two specific heat maxima, which ultimately
settles at, for certain concentrations, a double peak structure in the specific
heat curve. The positions of the two maxima depend on the exchange
interaction constants K, and K, (normalized against K;), and is apparantly a
characteristic of a multicomponent spin system described by more than one
exchange interaction constant. It should, however, be emphasized here that
the basic idea we have used to compute the thermodynamic quantities of
the systems differ from that of the equilibrium Ising lattice." This can be
seen from the following arguments. Consider a large sample divided into a
statistically large number of subunits, each of which contains a statistically
large number of atoms (and defects). If we neglect surface interactions among
the subunits, each subunit behaves independently of the others and would
contribute to the sum total of the free energy of the sample. The crucial
idea is that the free energy to be calculated is averaged over random distri-
bution of the defects. In the equilibrium model, the free energy per particle
of each subunit must be the same since a state of equilibrium is that in which

MAGNETIZATION M/Np,

I |

o I 2
TEMPERATURE kT/E,,

Fig. 4. Reduced magnetization M/Ny, versus
temperature at constant external field u, H/F44 = 0.1
for paramagnetic defects antiferromagnetically cou-
pled to host atoms, K, = —0.05K;, K; =0,
Jy = J, , (—) series expansion to O(c?) term, (- —-)
perfect chain.
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T T T
PARAMAGNETIC IMPURITY
K2 /Ki#=005,K30, 4= J;
A\ —T

35—

il !
00 05 10 15 20

TEMPERATURE kT/E,,

Fig. 5. Reduced susceptibility x(c) = kTX/Np,?,
where X = dM/dH is the susceptibility of the system.
Parameters same as for Fig. 4.

both mechanical and thermal equilibrium have been achieved. This implies
that the thermodynamic free energy has to be averaged over all possible
spatial configuration of the defects.®

In the presence of magnetic field, the thermodynamic function of the
random system is given by an infinite series in powers of c. If ¢ is small, the
series converge rapidly, since the correlation effects between any defect pair
is presumably small. On this basis, we have plotted in Figs. 4 and 5 the
magnetization and reduced susceptibility at constant field for the case where
one component is paramagnetic. In each case, we have terminated the series
at O(c?) term, and a separation of 20 lattice sites between any pair has been
chosen for numerical computation. Inclusion of the O(c%) term and reduction
of lattice separation to ten sites contributes insignificantly to third decimal
places.

APPENDIX
We have, from (64b),

Bty seves tng) = G0ty sy tay) (A.1)
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From the definition of G, (61), we have

3 >
Gz('?)(tx yeans In) = Z ”fj(G) Fp (o, 0"ty youny tyy) Fio”, 675 1) f{(0")
= Y"% fi(0) Fus(0, 0”5 ty yores tys) Bun(ty) frul0”) fil0") f0)
o,l.m
= Z AuBi(ty) G,(,Z-_l)(tl seves Bng)
im

= City) GOty yovy b)) + CG by s 1)) (A2)
where

Cij(t) = z Aimij(t) (A3a)

so that the matrix C(¢) is defined by
C(t)y = AB(t) (A.3b)
Similarly,
GOty yorr 1) = Gty oy 1) Disty) + G2 g sy 1) Dosty) (A
where
D, () = ; B,.(t) Az , D)= B(t)A (A.5)
The determinant of G satisfies a simple recurrence formula, as can be
observed by calculating
| Gty ooy L)l = | CE) | Gty s Ly
= | GN(1)] | Ct)l | Ctg)] -+ | C(ta)] (A.62)
with
FGO@)] = [ C@)l | 4] (A.6b)
Furthermore, from (A.3),
[C@) = 14]]B@)

Hence

|Gty oo )] = | A7 II | Bty A7)

822(8/4-3



332 F. T. Lee, E. W. Montroll, and Lee-po Yu

We shall now use these results to establish a recurrence formula for
hy(2y 5eers tny). Let

Ap = Bpq(ty seres 80) Bog(Es ey Ba)) — Bty yeues Tny) Ba(Es ooy 1)

( (n—2) - _
= Glf)(tl EARRS tn) Gl;.L ? (tz ERERS ] tn—l) - qull 1)(tl EAREE ] tn—l) Gg.z 1)(t2 EARRE tn)
(A.8)

If the recurrence formula (A.2) is applied twice to G}’ to reduce it to G{72
by removing t, and t,, , the first product in 4,, is

G2ty seves taDCra(t) Gty s tng) + Cusltn) G2ty eves 1y)]
= Gty .., 1)

X ACEGH ™ty sevos tas) Dia(ty) + G2ty evos tas) Dy(ty)]

+ Cult)GE 2 1evos tay) Dus(ty) + G372ty 1oney tay) Dy}

A similar expression exists for the second product in (A.8). The difference
between the two is

4, = Cyft,) Dyy(t)) Gty ..., )]

n—1
= Dy(ty) Ciolta)l 4 [» 7 T] [ B(t))] (A.9)

j=1
with
Az = D21(t1) C12(t2)| A l

By combining (A.8) and (A.9), we find a recurrence relation for 4, :

hn+1(t1 [EEESS tn) hn—l(tz seety tn~1) = hn(tl eeey tn—l) h'n(tz seresy tn)

n—1
+ Dyy(ty) Cratn)l A "1 H | B(t)l, n>1
j=1
(A.10)
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