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The one-dimensional, two-component linear Ising chain with nearest- 
neighbor interaction is formulated by using the transfer matrix method, 
with emphasis placed on the case in which the two components are randomly 
distributed along the chain. Certain recurrence formulas appear such that 
the mth-order partition function of one of the components is dependent 
on the lower-order ones. The algorithm provides a working basis for dis- 
cussing the thermodynamic and magnetic functions with various con- 
centrations of one of the components. An exact expression for the partition 
function is derived for a linear chain which is composed of a periodic distribu- 
tion of the two components. The construction of a periodic sequence which 
would approximate a random distribution of the two components is briefly 
discussed. 
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1. I N T R O D U C T I O N  

I t  is well known  that  the l inear Ising chain with short-range interact ion 

between neighbor ing sites does no t  exhibit phase transit ion,  m The intr insic 
interest remains,  however, in that  the model  is relatively simple to investigate 
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in comparison to the two- and three-dimensional systems. In addition, a 
chain of spins may serve in a certain approximation as a model of long 
molecules, which has found important applications in polymer physics as 
well as in biological systems. (2,a) Experimentally, a number of crystalline 
organic free radicals (~,5) and rare earth chlorides (~,7) are known to exhibit 
properties characteristic of a one-dimensional system; in both cases, the 
molecules or magnetic ions are arranged to form parallel chains such that 
the exchange interaction between ions of different chains is much weaker 
than that between ions within the same chain. Theoretical study using a 
generalized Ising model has been able to achieve reasonable comparison with 
the observed thermodynamic and magnetic functions of these substances. 

In this paper, we investigate the properties of a two-component linear 
Ising model, with emphasis placed on the case in which the two components 
are randomly distributed along the chain. (8,9) The formulation utilizes the 
transfer matrix method (1~ which enables the partition functions of the system 
with few defects to be computed in a straightforward manner. We will see 
that certain recurrence formulas appear so that the ruth-order defect partition 
function is dependent on the lower-order ones. (2) The algorithm provides 
a working basis for discussing the thermodynamic and magnetic functions 
with various concentrations of one of the components. 

Exact expressions for the partition functions can be derived for a linear 
chain which is composed of periodic distributions of the two components. 
While such distributions do not occur naturally in a real system, one expects 
that the qualitative similarities and differences resulting from various com- 
positions within a periodic chain, which is equivalent to an alteration of 
the concentration of one of the components, whould show up in these 
cases. The partition functions of the periodic systems are evaluated in 
Section 5 and in Section 8, we discuss briefly the construction of a periodic 
sequence of the two components which would approximate a random distri- 
bution of the two components. Our calculation is made for systems in which 
the sequence of the two components remains forever frozen in. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Let us consider a ring of N localized spins equally spaced on lattice 
sites which are labeled consecutively 1, 2,..., N. A spin at site i is identified 
by a variable ei with ei = 1 corresponding to a spin-"up" configuration 
and ~ = --1 to a spin-"down" configuration. The ring configuration implies 
periodic boundary conditions cri+u ~= e i .  Since we shall be concerned 
with two-component systems (species A and B), there will be three kinds of 
nearest-neighbor interaction. We let EAA, EA~ = EBA, and EBB represent 
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the energies of interaction between the various types of pairs AA, AB, and 
BB and define three coupling parameters (t3 = i / kT)  

/ ( 1  , = ( 1 )  

If/x~ is the magnetic moment of spins of species j ( j  = 1 --~ A, j = 2 ~ B), 
we define 

Jj ----- filx~H, j = 1, 2 (2) 

where /~jH is the interaction energy of the spin with an external field of 
magnitude H in the "up"  direction. 

The Hamiltonian of our system of spins can be written as 

N 

= Z + s%)  (3) 
i = l  

where K ~ has one of the values/(1, K2, Kn depending on the species located 
at points i and i § l, and J* is J~ if i is of species A and J~ if it is of species B. 
The properties of a perfect lattice of species A depend on the largest charac- 
teristic values ,~ of the matrix P whose matrix elements are 

2 

P(cr, (/) = exp[Kx~' ~- �89 _ (~')] = E hAbJ((r) ~bj(e') (4a) 
J = l  

with 

A~. = e K~ cosh dl ~ [ e-2K1 @ e2K1 sinh~ j]]1/2 (4b) 

and the ~bj are the eigenvectors of P corresponding to the eigenvalues At, 
which satisfy the orthogonality relationship 

~• 

We now define two other matrices Q and R whose matrix elements are 

2 

R(e, or') = e x p [ K ~ '  + 1jz(~ § ~r')] ---- ~ pj0~(e) 0~-(e') (6) 
i = 1  

2 

Q(cr, or') = exp[K2ae' -? �89 -~ (/)] = ~ ~j~j((r) q~(e') (7) 

The O's and ~'s also satisfy the orthogonality relations 

Z 0;(~) 0~(~) = 3;~, Z 4;(~) 4~(~) = 3,'~ (8) 

with the characteristic values pj and y j ,  respectively, given by formulas 
like Eq. (4b) but with the new appropriate subscripts on J and K. 
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3. P A R T I T I O N  F U N C T I O N  O F  A R I N G  W I T H  O N E  DEFECT 

We place our defect at lattice point 1 on our ring. Then the partition 
function of the system is given by 

N--1 N ] 

Z1 = 2 exp K~1~2 + 2 Kz~i~i+l + K2auaz + J~a~ -? ~ J~ai 
i=2 i=2 A 

N--1 

• [ I  exp[Klaiai+l -? �89 + ~i+1)] exp[K2eucq -t- 1J~(alv d- ~1)] 
i=2 

N--1 

a i=2 

= Z e((~, or; N) (9) 
0~• 

where we have defined E = J1 -- J2, 

P(cr, e'; t) = ~ ~ exp[�89 + ~t)l Q(e, e2) 
G2"''G t 

~--i 

• I ]  P((~,, a,+x) Q((~*, ~'), t > 2 (10) 
i ~ 2  

If we use the notation 

(j, k) = ~ r189 r (11) 
r 

then substitution of Eq. (4a) and (7) into (10) and application of the ortho- 
gonality relations (5) and (8) yields for t > 3 

2 

P((r, (r';t) = ~ yhA~2y~h((~)(j~,j l)(j~,ja)  r 
JlJ~Ja=l 

By introducing a few more definitions, 
eo~ = ?~/yz, co = AJ;q,  y{~ = (i, j)~(1, 1) 

A(or) = Z w ~ y ~ ( ~ ) ,  P~(a, or') = f~(e)A(cr)A(cr') (12) 

F~(o, or'; t) = Pz(cr, or') + cot-ZP~(o, or') 

we see that 

P(a, or'; t) = A[-~yze(1, 1) ~" Fz(cr, ~'; t) (13) 
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Returning to Eq. (9), we find that  

Z l  = AN-2ylZ(l, 1) 2 ~ [A(~)A(~) + ~oN-Sc~(~)A(~)I 
o-=~i 

= ,~1N-2~/12(1, 1)2[(1 -~ c022y~2) -~- r~N-2(y~l + CO22y~2)] 

We choose )t 1 to be the larger o f  the two characteristic values o f  the matrix P 
so that  (2~2/,~1) N = wN __~ 0 as N -~  oo. Then 

Z 1 ~ /~tN-2~12(1, 1)2(1 ~ -  0922y122) a s  N--+ o~ (14) 

To be consistent with a pat tern we shall use later, we write 

Z1 - A~-2y~2(1, 1) 2 h~ with h~ = 1 -q- co22y~2 (15) 

4. P A R T I T I O N  F U N C T I O N  W I T H  T W O  DEFECTS A N D  
T H E R M O D Y N A M I C  F O R M U L A S  FOR L O W  DEFECT 
C O N C E N T R A T I O N S  

Let us place one defect at lattice point  1 and another  at n. Then are three 
possibilities to consider (a) 3 < n < N - -  1, (b) n = 3, (c) n -~ 2. I f  we let t 
be the number  o f  lattice sites between defects, these cases are t > 2, t = 2, 
and t = 1. 

Consider case (a) with t ~> 3. By using Eq. (10), it can be easily shown 
that  the part i t ion funct ion o f  the system is 

Z2(t) = Z Z P(cq, ~t+l ; t) P(et+~, cq ;N -- t) 
G1,o't+ 1 

= A~-aY~a( I, 1) a ~ Z [P~(~, ~') + c~ or')] 
G,cr r 

• [e~(~', ~) + o/'-~-2P~(~ ', ~)] (16) 

where ~1 ~ ~r, ~t+~ ~ a ' .  As N --+ oo for  fixed t, co N-t-2 --+ 0 since 0 < co < 1. 
Hence 

Z2(t) = A~-'~14(1, 1) 4 ks(t) (17) 

with 

t--2 t r h2(t) = ~ Z [PI( ~, a ' )  + o) P2(e, ~ )] Pl(~r, or) 
CrtG" 

= Z ~f~(cr) F~((r, ~r'; t)f~(cr') (lSa) 
G,rJ 

t - -2~2 = A ~ l + m  A12 if t > 2  (18b) 



314 F.T.  Lee, E. W.  Montroll, and Lee-po Yu 

with 

Aij = ~fi(~)J}(~r) = YilY~I -l- ~2~y~2yj~ = Aji (19) 
17 

A~j can be treated as the elements of  a 2 • 2 symmetric matrix A so that  

I A I = det A = co2~(y22 - -  yxzy2z) 2 (20) 

An alternative form of  Eq. (18) is 

h2(t) = (1 + o~2y~2) 2 + oJ-~(yzz q- o~z~ya2y~2) 2, t > 3 (18c) 

In case (b) in which t = 2 and only one host  particle appears between 
the two defects, the part i t ion funct ion can be written as (% ~ o-, % ~- ~') 

Zu(2) = ~' Z P(cr, or'; 2) P(cr', ~r; N - -  2) (21) 
or,eft 

where 

with 

e(cr, cr'; 2) = Y, Q(cr, cr")[exp(e~")] Q(cr", or') 
a H 

= Z Y~,(~)[i, J] qS;(~') ~,~ 
i:i 

(22) 

[j, k] = ~ q~j(cr)[exp(E~r)] ~(cr)  = [k, j]  (23) 

If  we let N ~ m and note that  P(~, ~'; N --  2) -~ PI(~, ~'), we see f rom 
combining (22) with (12) tha t  

= A1 Yz (1, 1)' h~(2) (24) Z 2 ( 2  ) N - 4  4 

which 

h2(2) = [(1 + o~2%2y12) + o~?y~(x2~ + %2x2~yl~)l[1, 1]/(1, 1)~ (25) 

x~k = [j, k]/[1, I] (26) 

It  will be useful to express P(~r, ~'; 2) in terms of  J~(~r). Equat ion (12) can be 
inverted to give 9b(~r) as a funct ion of  J~(cr) as follows: 

~b:(cr) = w2[y2~f,(cr) - -  y:2f~(~)]/I A I:/2 (27a) 

9~2(cr) = [fz(~) - -  y2~A(cr)]/] A ]1/2 (27b) 

With  these relations, we can also introduce an F~(cr, e ' ;  2) which is consistent 
with (13) so that  

e(cr, ~'; 2) ----- yz2(1, 1)2 F~(cr, ~'; 2) (28) 
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I f  we substitute (27a, b) into (22), we find that  

F~(a, ~'; 2) --  ~fi.(cr') B,,~(2)fk(a) 

where 

(29a) 

Bn(2) : Bo(2)[y22(Y22 --  xlz Y2~) --  Yzz(x2~ Y22 --  x22 Y2~)] 

Ba2(2) = Bo(2)[--y~z(Yz2 -- xleYm) @ (x21yz2 --  x~2Y20] 

: B2,(2) (29b) 

B2z(2 ) : Bo(2)[y12(y12 - -  x12 ) - -  (x21Y12 - -  x22)1 

B0(2 ) = [1, 11 co22/[(1, 1)2[A [] 

One can again treat  B~j(2) as the elements of  the 2 • 2 symmetric matr ix 
B(2), so that  

] B(2)I - det B(2) = [1, 1] 2 w2Z(x~2 -- x12x2~)/[(1, l) 4 I A I] (30) 

For  all t > 2, we can also define the corresponding Bj~(t) analogous 
to (29b): 

Fa(a, a'; t) = ~fi.(cr') B~( t )A(a )  (31) 
jk  

with 

B:Hc(t  ) = ( ~ j k ( / ~ j / ~ l )  t - 2 ,  / > 2 (32a) 

] B(t)l = det B(t) = cot -2, t > 2 (32b) 

One can then obtain Z2(2) f rom (21) and (28). On that  basis, 

h2(2) = Z ~ fl(':r') fJ(a')fJ(or') B~i(2)f~(a) fx(e) 
i j  ~e" 

= Y, A.8 i(2) A .  
i j  

which can be verified to be exactly (25) as it should be. 
The pat tern is now clear so that  in case (c) with t = 1, the part i t ion 

funct ion can be written as 

Z2(1) = ~ P(c% c~'; 1) P(cr', ~; N - -  1) (33) 
acrt 

P(e,  - ' ;  1) -= (y12/A1) FI(~, cr'; 1) (34) 

F~(a, a'; 1) = ~f j ( ( r ' )  Bj~(1)fz~(a) (35) 
jk 

where 

822/814-2 
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I f  we use the nota t ion 

( j ,  k )  = Y~ 0;(~) r 
a 

then we have 

and 

z ~  = ( j ,  k ) / ( 1 ,  1) (36) 

2 

B~(1) = BoO) ~ pi(~o~y~z,~ -- y~z,~)~ 
i = 1  

Bzz(1 ) = --BoO ) ~ Pi(~ Y22Zi~ - -  y21zi2)(co2Yz2Zi~ - -  zi2 ) 
i 

= B~(1) 

B~(1) = Bo(1) ~ O~(,o~Y~i~ -- z~)~ 
i 

Bo(1 ) = AI(1, 1>~/(7,a21 A [) 

(37a) 

[B(1) = det B(1) = [Az2(1, l>4/(yz41A ])]pzp2(z22 --  zi2z21) 2 (37b) 

Equat ion  (33) can be simplified to give 

= )t 1 ~,z (1, 1) 4 h2(1 ) (38a) Ze(1) N - - 4  4 

h2(1) = [AIp~(1, 1)2/{712(1, 1)~}1[(1 § co2yt2za2) ~ + ~2(zz~ + c%y~ezzz) 21 
(38b) 

with ~j = pj/p~. 
We can now consider F~(cr, ~'; t) to be defined for all positive integer 

values of t by (29a), where the B~j(t) are defined by (29b), (32), and (37a). 
The explicit representations of  the quantities Aj, y j ,  and pj are 

~t2 = cleK~ ~ (e-~Xl + s12e~K~)~/2 

71t = c2e tc~ :~z (e -zK~ -I- s2e eZK~) 1/2 
~2 

Plt = cze x~ ~: (e -~K" § s~%~tq) zI~ 
p2 l 

where ci = cosh J i ,  si = sinh J i .  The quantities (i, j ) ,  (i, j ) ,  and [i, j ]  are 
explicit functions of  the J ' s  and K's. One finds 

(1, 1) = ( A I & ) - z / 2  cosh[~(e + 0~)1 e -n-~c~ 

(1, 2) = (A~A~)-~/2{s~ cosh[�89 + 0~2)] --  A~. sinh[�89 § 0x~)] e x~-tq} 

(2, 1) = (AaA~)-~/~{sz cosh[�89 + 0~] - -  Aa sinh[�89 + 0az)] e tq-K~} 

(2, 2) = (A~Az)-z/z cosh[~(e --  01~)1 e - r r x ~  
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where 

A i =  si 2 q -e  -4K~, i =  1,2 

0n = 2(Ka q-/<2) q- log[(sl q- A1)($2 q- A~)] 

Similarly, one finds that  

<1, 1> = (A2Aa)-l/2(cosh �89 ) e -x~-x3 = (2, 2> 

(1, 2) = (A2A3)-l/Z[Aa(slnh �89 ) - -  s2(cosh �89 e m-K~ 

= - < 2 ,  1> 

where 

Az = s~ "2 q- e -4x3, 023 = 2(K~ q- K~) q- log[(s 2 q- A2)(s2 q- A3)] 

Finally, 

[1, 1] = cosh ~ q- s2(sinh ~)/A2 

[1, 2] = --e-2K~(sinh *)/A2 = --[2, 1] 

[2, 2] = cosh e - -  s2(sinh E)/Az 

The thermodynamic  properties of  a chain with a low concentrat ion of  
defects can be expressed in terms of  the formulas derived so far. Fo r  a 
system with n defects located at r~, r2 ,..., rn ,  a thermodynamic  function 
q~(rz, r2 .... , r , )  can be written as 3 

qS(rz,r2 .... , re )  ~ ( n )  = ~ o §  ~ [ q ' ( r j ) - - ~ o ]  
j = l  

'n,-1 

-1- ~ f [~( r j ,  rk) - -  q~(rj) - -  q~(rk) q- q~0] § "'" 
]=l;k=j+l 

(39) 

where ~0 is the thermodynamic  funct ion for a perfect system, ~(r;)  is that  
for  a system with one defect at r j ,  etc. In particular,  if ~0(n) - -  log Z~(n), 
where Z,(n) =~ Z , ( r a ,  r2 ,..., re) is the part i t ion function for a system with n 
defects, (39) becomes 

log Z,~(n) = log Zo + ~ log[Zl(rj)/Zo] 
J = l  

-}- ~ log(Z2(r~, rk) Zo/[Zl(r~) Zx(rk)]} + "'" (40) 
j = l , / c = j + l  

For  our  linear system, Zl(r~.) is independent  of  rj[Eq. (15)], and Z2[rj-, r~) 
depends only on the relative separation I r j -  rkl = t of  the two defects 
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located at rj and rk. Let n(s) be the number of successive pairs whose members 
are separated by s lattice sites. Then the double sum in (40) can be written as 

n(s) log[Z2(s) Zo/Zl ~] 

If  the defect concentration is c, given a defect site, the probability that another 
one is s lattice spacings away is c. Since the total number of defects is Nc, the 
expected number n(s) of defect pairs separated by s intervening lattice sites 
in a very large ring is Nc �9 c = Nc 2 independent of s. Hence, to order c 2, 

log Z(c) /N = log )~1 + 2c log[0, 1) ~/Ai] + c log hi 

+ c ~ ~ log[h2(s ) ho/hz 2] + ... (41) 
S = l  

with h0 = 1. Thermodynamic properties of the system can be calculated 
from this expression in the usual manner. (5~ 

5. PROPERTIES OF SYSTEMS W I T H  SIMPLE P E R I O D I C  
A R R A N G E M E N T  OF DEFECTS 

The partition function of an arbitrary sequence of A's and B's is 

N 

Z -~ ~ [ I  exp[KJ'~+l%%+z 4- �89 + �89162 (42) 
a=4-1 J=l 

where K j,~+l has values Ks, /(2, or Ka, depending on whether the pair 
j , j  + 1 is an AA pair, an AB (BA) pair, or a BB pair. Also, J~ is J1 i f j i s  an 
A and J2 i f j  is a B. Now let 

WJ,J+l(a, ~') = exp[K~,J+zacr' + �89 + �89 (43) 

There are four possible W's. In terms of (4a, b), (6), (7), and (10), these are 

W~ = P, W~ = R 

W~(J1, J2) = (e;/~ e_O12) Q, W.~(J2 , JO : Q (e; 1~ eO/2) 
(44) 

The partition function is then 

Z = tr(W a,~ W 2.3 "" W Na) (45) 

This section will be concerned with periodic arrangements of defects 
and, therefore, periodic arrangements of W's in Z. The simplest periodic 



TwOlComponent Ising Chain with Nearest-Neighbor Interaction 3t9 

sequence is the al ternat ing one A B A B A B  .... In  that  case, all W j,~+~ equal  
W2(J1, J2) or W2(J2 , Yl) and 

Z = tr[ W2(J~, J~) W2(J~, j~)]g/~ ~ [Az(l, 1)]u/~ (46) 

where Az(1, 1) is the largest roo t  o f  the characteristic equat ion 

[A(1, 1)12 - -  2A(1, 1) Aza  + A,, ,  = 0 (47a) 

defining 

and 

2AL,  = tr[W~(J~, 4 )  W=(&, Jz)] 

= 2[e ~Ka cosh(J1 + J2) + e - 'x= cosh(J1 - -  J.a)] 
(47b) 

A~,~ = det[W2(J1, J2) W2(J2, ,/1)] = (2 sinh 2K2) 2 (47c) 

Generally,  suppose that  the defect sequence is periodic with period n. Then 
the 0~ + 1)th particle of  the chain is the same as the first, and if M n  : N, 

Z = t r ( g a , 2 W  2,3 "" W~,I) a4 ~ A1M Os) 

where A~ is the largest characteristic value of  the quadrat ic  equat ion (since 
the p roduc t  o f  the W's is still a 2 • 2 matr ix)  

A z - -  t r (W~#W 2,a ... W ~,1) + det(W~.2W 2,3 ... W n,1) = 0 (49) 

Since the de terminant  of  a p roduc t  o f  matrices is the p roduc t  o f  their deter- 
minants ,  we have 

det( W~'2W~'3 "'" W~'Z)= I~ det(Wj'~+I) = (I [2 sinh(2KJ.~+~)l 
j=l  j=l 

(50) 

The trace of  the p roduc t  of  the W's is more  sensitive to the sequence and,  
ra ther  than writing a general formula ,  we calculate it for  several special cases. 

In  order  to see the effect o f  changing the defect concentrat ion,  let us 
suppose tha t  there is one defect for  each n a toms,  so tha t  each defect is 
followed by n - -  1 host  a toms.  The concentra t ion is e = 1In. We identify 
the appropr ia te  A by A ( n -  1, n). The W sequence follows f rom W a,2 = 
We(J2, J1), Wn' l  : -  W2(J1 , Jz), all other  W j,j+z = Wz. Then  

w j,j§ = w2(4,  JO w~-~w~(J1, &) 

= Q(e; /2e-O' /~)P~-~(e; /~Oe- ' /~)  Q 
(51) 
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Then, f rom (10) and (8), 

t r (W ~,2 ... W ~,1) = ~ P(a, ~; n), n > 1 
r 

= A~--1[]/12(1, 1) 2 -t- y2z(1, 2) ~1 + A~-2[ya2(2, 1) ~ + ~ ( 2 ,  2) 2] 

(52) 

Hence, our characteristic equation (47a)) becomes 

A2(n - -  1, 1) - -  2A(n - -  1, n) A ._  m + A,~_t,1 = 0 (53a) 

where 

2A._~, t ---- At"-2yt2(1, 1)2[(1 -k ~o22y~2) § co"-2"ty2t= + co22y~2)1 (53b) 

,4._t,1 ---- (2 sinh 2K2)2(2 sinh 2K1) ~-* (53c) 

Another  example which can be dealt with in a similar manner  is that  of 
periodic blocks, say n2 B's followed by nt A's, etc., with n~ -t- n2 = n. Then, 
if Mn = N, 

Z = tr[W~2-1W2(Jz, gl) W~-tW~(J1,  J2)] m (54) 

Now, if n I > 1 and n2 > 1, 

Then 

A.t,~2 = det[ W~ 2-1 Wa(Jz, J1) W~ x-1 W2(J1, J2)] 

= (2 sinh 2K~)*~-1(2 sinh 2K3)~*-x(2 sinh 2K2) 2 

2 A ~ , ~  = tr[W~-tW2(J2 , Jr) W~- tWz(J t  , J2)] 
2 

(55a) 

Ani--1, ^n2--1^, [; 
~, h zht",~ r, .ul ,J,)(Jl ,Js)<Ja,J2)<J3,J4) (55b) 

J l " " J 4  ~ 1  

z ~ [ A ( n l ,  n2)] ~ 

with A(nl ,  n~) the larger root of the equation 

[A(nt , n2)] 2 -- 2A.I, ,~A(nl,  n2) + A~l.n ~ = 0 

Since A satisfies the equations 

A 2 --  2Ae K1 cosh J1 4- 2 sinh 2Kt = 0 

A n - -  2An-te xz cosh Jt  -]- 2A~-2 sinh 2K1 = 0 

(56a) 

(56b) 

(57a) 

(57b) 
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it can be easily shown that  

A,~,+=.,,, = 2A.,+l, ,~2 e x* cosh " / 1  - -  2A, , . , ,~  sinh 2K1 

A,, . , ,~+ 2 = 2 A , ~ . ~ + l e  x~ cosh J2 -- 2A,~.,,~ sinh 2K3 
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(58a) 

(5Sb) 

6. P A R T I T I O N  F U N C T I O N  O F  A R I N G  W I T H  A N  
A R B I T R A R Y  C O N C E N T R A T I O N  A N D  L O C A T I O N  
O F  DEFECTS 

When the defects are not  periodically arranged, we can no longer find 
a closed formula for the partit ion function or for the thermodynamic 
properties of our ring. However, a series expansion in the concentration can 
be found. 

In the three-defect case with q lattice points separating the second defect 
from the first and t2 separating the third from the second, it can be easily 
shown that  as N ---, m for fixed tt and t2, 

Z ~ ( q  , t2) = ~ P(cr, or'; f i )  P(cr' ,  ~"; t2) P(~" ,  ~; U - -  t l  - -  t2) 
G 

~'~ A~-6Y~6( 1, 1) 6 Z rl(cr, or'; fi) F~(cr', ~r"; t2) P~(cr", ~r) (59) 
G 

It is convenient to define 

F~(~, or"; q ,  t2) = 

F.(~,  "" a , tx, t2 ,..., t~s) 

G(n)t• ij t q  , t2 , . . . ,  tn) = 

Then, as N--* 0% 

with 

F~(~, ~';  q)F~(~ ' ,  ~"; t2) 

y~ F~(~, ~' ; q )  F . _ l ( . ' ,  ~; t2 , t ,  ..... t . )  
G" 

Z(~) F.(~, ~' ; q ..... t . )  h(~')  

Z 3 ( t x ,  t2) = /~1N--6~]16( l ,  1) 6 ]13(tl, t2) 

.-.(2)/~ h~(tl ,  t~) = t , 1~ ,1 ,  t~) 

Incidentally, by re fe r r ingbackto  (18), we see that  

h~(t) = G~i)(t) 

(60a) 

(60b) 

(60c) 

(61) 

(62a) 

(62b) 

(63) 
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For  a linear chain with n defects, it can be easily shown that as N ~ oo for 
q ,  t~ ,..., t ,_l fixed, 

with 

Z n ( q  ,..., tn-z) ~N-Z~ ~ .  = al ~1 tt ,  1) 2" hn(q  ..... t,~_~) (64a) 

where 

Cij(t) = Z AimBm~(t) 
qT~ 

Dis(t) = ~ B ~ ( t )  A ~  
q n  

The elements A,~ and B~j(t) for t = 1, 2 ,  > /3  are defined in Section 4. 
With these results, we can find a simple expression for log Z~ in terms 

of the h~. To see how this goes, we note that oJ = A2/A z , and it was postulated 
that As = min0h ,  ~,~). I f  the defect concentration is small, then 
(q + t~ ".. + t~) is large since it is the number of  lattice spacings between 
the first and the nth defects. In fact, if the concentration is practically zero, 
we can neglect the right-hand side of (65a) when n > 1. Then 

h2(t~) ho = hlh~ (66a) 

This implies that 

hn(tx , t2 ..... tn--X) = h~ ~ (66b) 

We may call this the zeroth approximation to h~ and therefore to Z~ .  
The first approximation, which is a slight improvement,  can be obtained 

by supposing that  the right-hand side of (65a) can be neglected when n > 2. 
Then 

hs(fi , t~) = [h2(q)/hz2][h2(t~)/h~ ~] hz 3 (67a) 

On the basis of the hypothesis, 

ha(q ,  t z ,  t3) = h3(q ,  t2) hz(t2, ta)/h2(t2) 

= [h2(q)/h~ 2] [h2(t2)/hz 2] [h2(ta)/h~ ~] hz 4 (67b) 

n > l  

(65a) 

(65b) 

(65c) 

h , ( t l  ..... t , -1)  = G~)(t l  .... , t , -1)  (64b) 

In the appendix, we show that hn(q .... , t~_z) satisfies a simple recurrence 
relationship [Eq. (A. 10)]: 

h.+~(q ,..., t . )  h._z(t2 ..... t._~) = h . ( q  ..... t . -a)  h . ( tz  ,..., t . )  

-~- D21(t1) C~(t~)l A I ~-~ I-I [ B(tj)i, 
j=2 
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For the first approximation, 

h,(t~, t~ ,..., t,_~) = hz ~ I-[ [h2(t~.) ho/ha ~] (67c) 
j=l  

Clearly, if all tj are large so that h2(5.) = h~ 2, we recover the zeroth approxi- 
mation. 

If  we proceed to a second approximation, the pattern will become clear 
so that we can generalize to the complete solution of the problem. Let us 
suppose that the right-hand side of (65a) can be neglected when n > 3. Then 

h , ( f i ,  t2, tz) h2(t2) = ha(h ,  t2) h~(t2, t3) (68a) 

which leads to 

hahz(tl , t2) hJ~3(t2 , ta) ~-I hoho(tJ) �9 4 

j=l ' ~1 

For our second approximation, we obtain 

n--1 n-2 
h , ( t l  , , . . . ,  t , _ O  = 17 u (tj, (6sc) 

J=l j=l  

where we define 

h , ( q  ..... t~- l)  h,_2(t~ ,..., t,_~) 
U1 --~ h i ,  Un(tz .... , tn-1) = hn-l(ta ..... tn-2) hn- l ( tz  .... , tn-1) ' n > 1 

(69) 

The zeroth approximation is U~ n, the first is U~ n multiplied by the product 
of the U2's, the second is the product of the U~'s, U2's, and the U~'s. It is not 
difficult to guess that the general formula for h,~ is 

n--1 n--2 n--3 

hn([1 ... .  ' tn-1) = e l  I ~  U2(ts) H U3(tJ , /J+l)  I ~  U4( / J ,  t J + l , / J + 2 )  x - ' ,  (70)  
j=l j~l j=l 

so that 

log Z ~ ( q  .... , t~_ 0 = N log h~ + 2n log[(?z/y~)(1, 1)1 

n--1 n--2 
+ n log U1 -J- ~ log U2(tj) + ~. log Ua(t j ,  tj+l) 

J=l J=l 

n--3 
+ ~ log Ua(t~, t~+a, t~+2) + "'" (71) 

j=l 

Rather than giving a formal proof of (70), we examine one special case 
to observe the basic pattern behind the equation. Let us suppose that we 
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wish to calculate the contribution of the Us's to h~ when it is postulated 
that hn+lhn_ 1 = h~h~ when n > 15. Then if (70) is valid for hat, 

h~2(q ,..., t2t) = hat(q ..... to0) h2t(ta ..... t~O/h2o(ta ,..., t2o) 

Us(q  ,..., t4)[Us(t~ ..... ts) "'" Us(q7 ..... to0)] 2 Us(q8 ,..., tat) 
U.~(t2 ,..., ts) Us(t3 ,..., t6) "'" U~(tt7 ,..., tzo) 

. . . .  Us(t t ..... t4) U~(t2 ..... ts) "'" U.5(t17 ,..., t20) U5(/18 ,..., t21) "'" 

The crucial feature is that the numerator contains the square of the U 
functions which appear in both haz's. These are exactly the U's which appear 
once in hzo(t2 ,..., too), so that one of the two factors of the square cancels the 
denominator. This observation can be made on the basis of an induction 
proof  of (70) in that the value of n for which one sets h ,+ lh ,_ t  = h,h~ can 
be made as large as one wishes in the case N --~ ~ .  

It must be emphasized that any specific U which we wish to use in (71) 
must be calculated from the exact recurrence formula (65a) and the definition 
(69). 

7. ALGORITHM FOR log Z, W H E N  DEFECTS ARE 
R A N D O M L Y  LOCATED 

The numerical value of any U~(q ,..., tj_O depends explicitly on the 
number of lattice spacings between successive defects. Consider first 
~ log Ua(tj). There are a certain number of successive defects separated by 
one lattice spacing, a certain number by two, etc., so that if n(s~) is the number 
of successive pairs whose numbers are separated by Sl lattice spacings, the 
sum over the Ua becomes 

n(st) log U~(s~) (72) 
83.~1 

Now let n(sz ,  s2) be the number of successive defect triples such that st is the 
number of lattice spacings between the first two members of the triple and 
s2 that between the second two. Then the U3 term of (71) becomes 

2 2 n(st,  s~) log U3(st ,  s~) (73) 
Sl~l 82=1 

Successive triples are overlapping: If the first triple is characterized by (s~, s~), 
the next is characterized by (s2, ss), and so on. We can similarly define 
n(sz ,  s2 ,  s3) for U~, so that (71) becomes, as N - +  o% 

N -~ log Z,~(n) = log A t + 2 (n / N)  log[(l, 1) ~,/At] -1- (n /N)  log Ua 

+ U - t  ~ n(sl) log Us(st) 

@ X-1 s 2 n ( s t ,  $2) log U z ( s t ,  s 2 )  + "'" (73) 
Sl, s2=l 
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When our defects are distributed randomly with concentration c, we can 
find explicit formulas for n(sl), n(sl ,  s~), n(sl ,  sz ,  s3), etc. The number of 
successive pairs whose elements are separated by sl lattice spacings are 
nc(1 -- c) 81-~, since such a configuration corresponds to a defect (of which 
there are n) followed by sl -- 1 host atoms. Similarly, the number of triples 
with spacings sl and s2 is nc(1 -- c) 81-~ c(1 --  c) s~-l, the number of quadruples 
nc(1 -- c) 81-1 c(l -- c) ~.-1 c(1 -- c) ~3-~, etc. Since c = n/N, we obtain, as 
N--+ o% 

N -1 log Z(c) = log A~ + 2c log[(1, 1) ~1/A1] %- c log U1 

+ e+l  2 Z (1 - c) uj+l( l .. s3 (75) 
j = l  si'" sj=l 

8. A P P R O X I M A T I O N  OF A R B I T R A R Y  D I S T R I B U T I O N S  BY 
PERIODIC O N E S  

In Section 4, we found that in a chain with random distribution of 
defects (hereafter denoted by B) at concentration c, the expected number of B 
pairs separated by s intervening lattice sites in a very large ring is Nc 2 inde- 
pendent of s. One can approximate a random chain by a periodic one by 
constructing a sequence of A (host sites) and B's such that the number of B 
pairs occur in the correction proportion Arc ~. If  the period is small, only the 
nearest- and perhaps the next-nearest neighbors occurs in Nc 2 times, but 
as the period becomes larger, one can expect more distant neighbor pairs 
to appear in the correct number. 

As an example, we consider a random chain of equal numbers of A 
and B of length N. Then the number of pairs of  B's separated by an integral 
number of lattice spacings is N/4. In a chain of period four, 

A A B B ] A A B B I A A B B ] A A B B  

the number of pairs of B which agree with N/4 comes from the first, third, 
fifth, seventh, ninth, etc., neighbor pairs, but wrong in the second, fourth, 
sixth, eighth, etc., neighbor pairs. The chain of period eight, 

A A A B A B B B t  A A A B A B B B [ A A A A B A B B B  

has the required number N/4 of pairs of B separated by 8 j -  7, 8 j -  6, 
8j -- 4, 8j --  2, 8j -- 1 wi th j  ---- 1, 2 ..... A chain with period 12 which agrees 
with a random chain in the number of first, second, third, and fourth 
neighbors is 

B B B B A B A A A B A A  [ B B B B A B A A A B A A  
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An example of a case of period 16 which agrees with a random chain up to 
the sixth neighbors is 

B B B A A A A B A A B A B B B A  [ B B B A A A A B A A B A B B B A  

]n Table I, we have compiled the periodic sequence for various concentrations 
c which would approximate a random two-component chain correct to 
n neighbors. 

9. T H E R M O D Y N A M I C  PROPERTIES OF A 
T W O - C O M P O N E N T  L I N E A R  IS ING C H A I N :  
G R A P H I C A L  A N D  D I S C U S S I O N S  

The thermodynamic properties of the various two component Ising 
chains obtained in Sections 6 and 7 are investigated graphically (Figs. 1-3). 

The zero-field specific heats for ferromagnetic components are computed 
for the two-component chain with random distribution (Section 7) and 
periodic distribution (Section 6) for the concentration range 0 < c < 1. The 
theoretical curves have rather similar structures. For small concentration c, 
the specific heat rises toward a maximum and then tails off gently at high 
temperatures. The behavior is typically that of a perfect chain with type A 
atoms. For large c, the specific heat tends to peak at a temperature typical 

t ~ "1 l r I I I I I 

O4l /#% k Kz=I'25Kj,K3=SKr -~ 

~, o2 
p-  

IM 

o 0.: 
IJ. 

t l l  
o-  

0 

l I I E l r I I k__. 
0 0.5 tO 1.5 20 2.5 5.0 5.5 40 4.5 5.0 

TEMPERATURE kT/E AA 

Fig. 1. Zero-field specific heat for two-component random 
Ising chain, both components ferromagnetic /(2 = ] .25Kz, 
K3 = 5K1, versus reduced temperature kT/EAA. Note the 
p r e s e n c e  o f  t w o  m a x i m a  f o r  e = 0 . 7 .  
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. 4 5  _1 I I I I I I f I 

.40 / X Kz=I.25K I .,K~= 5K= _ 
r ~  nl -I-nz=lO 

f-,,, \ 

~.25 
z 
~ ,2G 

u,I 
a..15 
m 

,10 

i 
~O~ 

~ I I t I i I I I I , I 
0 0.5 1.0 1.5 2D 2.5 3.0 3.5 4.0 4.5 5,0 

TEMPERATURE kT/EAA 

Fig. 2. Zero-field specific heat  for  two-component  periodic 
Ising chain,  with  n~ + nz = 10, b o t h  componen t s  ferromagnet ic  
(same parameters  as in Fig. 1). No te  again  the  presence of double  
maxima.  

I I I I I 
0 I 2 3 4 5 

TEMPERATURE kT/EAA 
Fig. 3. Zero-field specific heats.  The  approximat ion  of  a 
r a n d o m  chain by  a periodic one is more  evidently displayed 
here  for  various concentra t ions  c. ( ) The  r a n d o m  chain;  
( -  - - )  the periodic chain.  
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of the type B atoms. In the intermediate range of concentrations, there is a 
competition between these two specific heat maxima, which ultimately 
settles at, for certain concentrations, a double peak structure in the specific 
heat curve. The positions of the two maxima depend on the exchange 
interaction constants/<2 and K~ (normalized against/(1), and is apparantly a 
characteristic of a multicomponent spin system described by more than one 
exchange interaction constant. It should, however, be emphasized here that 
the basic idea we have used to compute the thermodynamic quantities of 
the systems differ from that of the equilibrium Ising lattice. (m This can be 
seen from the following arguments. Consider a large sample divided into a 
statistically large number of subunits, each of which contains a statistically 
large number of atoms (and defects). If we neglect surface interactions among 
the subunits, each subunit behaves independently of the others and would 
contribute to the sum total of the free energy of the sample. The crucial 
idea is that the free energy to be calculated is averaged over random distri- 
bution of the defects. In the equilibrium model, the free energy per particle 
of each subunit must be the same since a state of equilibrium is that in which 

.6 6 
g 

c:,% \\ 

I 
o 2 

TEMPERATURE kT/EAA 

Fig. 4. Reduced magnet iza t ion  M/Nf fz  versus 
temperature  at  cons tan t  external field fflH/EAA ~ 0.1 
for  paramagnet ic  defects ant i ferromagnet ical ly  cou- 
pled to host  a toms,  Ks = --0.05K1, K3 ~ 0, 
J1 = a'~, ( ) series expansion to O(c ~) term, ( -  - - )  
perfect chain. 
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I I L l 
PARAMAGNETIC IMPURITY 

4.C -- ~ / K I = - O ' O 5 ' K 3 = O '  dl= d2 

2 . =  - o - 

_ 2 . 0 -  ~Ill 

1.5 ~ l  

0.5 1.0 1.5 2.0 
TEMPERATURE kT/EAA 

Fig. 5. Reduced  susceptibi l i ty X(C) = kTX/NFz ~, 
where  X = dM/dH is the  susceptibi l i ty of  the  sys tem.  
Pa ramete r s  s ame  as for  Fig.  4. 

both mechanical and thermal equilibrium have been achieved. This implies 
that the thermodynamic free energy has to be averaged over all possible 
spatial configuration of the defects. (13) 

In the presence of magnetic field, the thermodynamic function of the 
random system is given by an infinite series in powers of c. If c is small, the 
series converge rapidly, since the correlation effects between any defect pair 
is presumably small. On this basis, we have plotted in Figs. 4 and 5 the 
magnetization and reduced susceptibility at constant field for the case where 
one component is paramagnetic. In each case, we have terminated the series 
at O(c 4) term, and a separation of 20 lattice sites between any pair has been 
chosen for numerical computation. Inclusion of the O(c ~) term and reduction 
of lattice separation to ten sites contributes insignificantly to third decimal 
places. 

A P P E N D I X  

We have, from (64b), 

h~(q t~_l ) = ~(~-z)r, ~'"~ ~'11 k ' l  , ' "~  in--l)  (A.1) 
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From the definition of  G!. ~) (61), we have 

(n )  . ,. Gi~ (ta ,..., t , )  = ~ f~(c 0 F,~_I(~, cr ; tl ..... t , - z )  F~(e", or, t , )  f i (a ' )  
r 

= Z ~,h(Cr) F,~_z(a, a"; tz ,..., t , - O  Bz~(t , ) f~(c/ ' ) f~(a ' )J~(a ')  

[,qn 

uzj t ' l  ..... t ,-a) @ ci2u2~ t,x .... , t ,-z) (A.2) 

where 

C,j(t)  = ~ A~B, ,~ ( t )  (A.3a) 

so that  the matrix C(t)  is defined by 

C(t)  = AB( t )  (A.3b) 

Similarly, 

G(")~t t , )  = ~(n-1)(, tn) Da~'(tl) @ G~-l)(t~ .... , t , )  D2j(tx) (A.4) iy \ 1 , ' " ~  " ~ i l  k t 2  ,'"~ 

where 

D~j(t )  = Y" B,~( t )  Az j ,  D(t )  =- B( t )  A (A.5) 

The determinant of G ('~) satisfies a simple recurrence formula,  as can be 
observed by calculating 

[ G(")(tz ,..., t ,)l  = I C(t,)I [ G("-a~(tt ..... t~-0l 

= r Ga)(q)[ lC(t2)[  C(t3)] .-. I C(tn)] (A.6a) 

with 

Furthermore,  f rom (A.3), 

Hence 

Gm(t)] = i C(t)] A ] 

C(t)[ = ] A I ] B(t)J 

(A.6b) 

I G('~ ..... t•)l = 1A ]'~+1 I~ X B(tj)l (A.7) 
j = l  

822/8/4-3 
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We shall now use these results to establish a recurrence fo rmula  for  
h , ( t l  ,..., tn-O.  Let  

An  = hn+l(tl ,..., tn) h~-l( t2  ,..., t , -1 )  - -  hn( t l  .... , tn-z)  h~(t2 .... , t , )  

---- "11~(n)('~.~x , ' " ,  tn) G~'~-~)(t2 ,..., t , - O  - -  G~-D( t l  ,..., t,_11~ G("-l)(t11 ~. ~ ,..., t , )  
(A.8) 

~(n) to reduce it to G ~  -~) I f  the recurrence fo rmula  (A.2) is applied twice to ,-,zl 
by  removing  tl and t . ,  the first p roduc t  i n / 1 .  is 

G~-~)( t2  ..... t ,~_l )[C~(t . )  G~'~-a)(q ,..., t . - O  -? Cx2(t,~) G~'~-~)(t, ..... t.-1)] 

= G~-~)( t~ ,..., t~z-x) 

(n-s) • { C n ( t n ) [ 6  n (t~ ..... t , - O  Dal(ta) + G~-2) ( te  ,..., t , - x )  Del(tz)] 

q- Cl~(tn)[G~-2)( t~ ,..., tn -O Dl~(tl)  q- G~-2)( t2  .... , t,~-l) D~z(q)]} 

A similar expression exists for  the second p roduc t  in (A.8). The difference 
between the two is 

/1~ = Cz2(t , )  D2~(tz)l G("-2)(tz  ,..., t , - i ) l  

n - -1  

= D~z(ta) C~(t,)[  A l "-~ [-[ { B(t~)[ (A.9) 
9=1 

with 

/lz = Ozl(q) C~e(tz)l A [ 

By combining  (A.8) and (A.9), we find a recurrence relat ion for  h ,  : 

h~+l(tz ,..., tO  h~-a(t~ ,..., t , _ O  = h ~ ( q  .... , t,~_~) h,~(t2 .... , tO  

+ O21(q)  Clz(t~)L A [,-z l--[ { B(t~)[, 
5=1 

n > l  

(A.10) 
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